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Czes¢ 1: tancuchy Markowa
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Podstawowe pojecia, cz. 1

Niech (Q, F,P) bedzie przestrzenia probabilistyczng. Czym sa
o-algebra F i miara probabilistyczna P bedzie jasne z kontekstu.

Skonczony zbiér X = {1,2,..., n} nazywamy przestrzenia standéw.
tancuch Markowa mozemy przedstawié jako:

» Ciag zmiennych losowych (Xp, X1, X2, ...), gdzie X; : Q@ — X.

» Skierowany graf z wagami G = (X, E, w), ktérego krawedzie
wychodzace sumuja sie do 1.

» Macierz przejscia P : X — X, ktéra jest kwadratowa,
nieujemna (Vx,y € X' : P(x,y) > 0) oraz stochastyczna

(VxeX > cx Plx,y)=1).

Intuicyjnie, zdarzenie elementarne w € 2 jest Sciezka ztozong z
wierzchotkéw grafu G, czyli (Xo(w), Xi(w), Xo(w), .. .).
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Podstawowe pojecia, cz. 2

Interesuja nas tancuchy jednorodne, w ktérych prawdopodobienstwa
przejscia nie zmieniaja si¢ w czasie: Va, b € X, Vt € Ng mamy

P(Xer1=a| Xe=b) =P(Xi = a| Xo = b).

Kazdy fancuch spetnia wlasnos¢ Markowa, ktéra méwi, ze
przysztos¢ zalezy tylko od stanu terazniejszego: Vt € Ny, Vx; € X
mamy

]P(Xt—l-l = Xt41 | Xe=xt,Xe—1=Xt-1,..., X0 = XO)
= P(Xt+1 = Xt+1 | X = Xt)
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Pozegnanie z P (nie bedziemy juz go uzywac)

Fakt. Niech P bedzie macierza przejscia. Wtedy dla kazdej pary
stanéw x,y € X i kazdego czasu t > 0 mamy

P(x,y) =P(X1 =y | Xo = x)

Pi(x,y) =P(X; = y | Xo = x).

Innymi stowy, P*(x,y) méwi nam o prawdopodobienstwie przejscia z
x do y w t krokach.

Oczywiscie PO(x,x) = 1 oraz P%(x,y) = 0.
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Nierozktadalnosé

Definicja. Macierz przejscia P jest nierozktadalna wtw dla kazde;
pary stanéw x, y € X istnieje czas t > 0 taki, ze P*(x,y) > 0.

Intuicja. Z kazdego stanu mozemy dostac¢ sie do dowolnego innego
stanu w skonczonej liczbie krokéw.

Obserwacja. W jezyku teorii graféw nierozktadalnos¢ oznacza, ze
podlegty graf macierzy P jest silnie spjny.
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Nierozktadalnos¢ [PRZYKLADY]

|

a) Nierozkadalny b) Rozktadalny; dwie c) Rozktadalny

n|erozkada|ne sktadowe spéjne

@ g O g
(d) Rozktadalny; jedna sktadowa (e) Tak samo jak w (c)
nierozkadalna, druga rozkadalna

8/34



Okres | okresowo$¢

Definicja. Liczbe d(x) := ged{t > 1: P*(x,x) > 0} nazywamy
okresem stanu x.

Fakt. Niech P bedzie nierozktadalna. Jezeli jakis stan ma okres
k € N, to wszystkie stany majg okres k.

Whiosek. Okres jest wtasnoscig catego nierozktadalnego tancucha
Markowa.

Definicja. Jezeli okres wszystkich stanéw wynosi 1, to fancuch
nazywamy nieokresowym.

Obserwacja. Okres P mozemy réwnowaznie zdefiniowa¢ jako liczbe:

gcd{k € N : podlegty graf P zawiera skierowany cykl dtugosci k}
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Okres i okresowos¢ [PRZYKLADY]

INANES

) Okres 3 ) Okres 1 ) Okres 4

(d) Okres 2 (e) Okres 1 (f) Okres 1
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Rozktad stacjonarny 7

Definicja. Niech 7 € [0, 1]'*! bedzie wektorem wierszowym
reprezentujacym rozktad prawdopodobienstwa (3, o 7(x) = 1).
Jezeli dla kazdego y € X spetniona jest réwnos¢

w(y) = > 7(x)P(x.y),
XEX

to m nazywamy rozkfadem stacjonarnym tancucha P.

Obserwacja. Rozktad stacjonarny 7 jest lewym wektorem wtasnym
macierzy przejscia P odpowiadajacym wartosci wiasnej réwnej 1:

P =m.
Fakt. Jesli 7 jest rozktadem stacjonarnym P, to dla kazdego t > 0

zachodzi réwniez
TPt = 7.
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Rozktad stacjonarny m [PRZYKLADY]
01 L
P = [1 o] m=[1/2 1/2] %
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p— [018 0(')2] w=[5/6 1/6] %kl
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0.9
0 1 0
P[l 0 0] T=[1/2 1/2 0 1
0 0.1 09 0.1
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Twierdzenie. Jesli P jest nierozktadalna, to istnieje unikalny i
Sci$le dodatni rozktad stacjonarny 7.
(Zatem jest wtedy tylko jedno rozwigzanie réwnania 7P = )

Twierdzenie. Jesli P jest nieredukowalna i nieokresowa, to
: t
lim Pt(x,y) = 7(y)
(Wiersze P upodabniaja sie do )

Fakt/Whniosek. Jesli P jest nieredukowalna i nieokresowa, to
dN e N, Vx,y € X, Vn > N mamy P"(x,y) > 0.

(Od pewnego momentu macierz staje sie dodatnia i juz taka
pozostaje)
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Odwracalnosé

Jezeli dla kazdej pary x,y € X rozktad prawdopodobienstwa
v € [0,1]1*1 spetnia

v(x)P(x,y) = v(y)P(y, x), (*)
to macierz przejscia P jest odwracalna wzgledem v.
Fakt. Jesli P jest odwracalna wzgledem v, to v jest rozktadem

stacjonarnym P (czyli v = 7).

Dowdéd. Sumujemy obustronnie (*):
erx V(X)P(Xay) = ZXGX V(y)P(y,X) =
v(y) [Exex Py, x)] = v(y). Czyli vP = v. O

Fakt. Jesli P jest odwracalna, to jej okres jest < 2.
Dowdd. Warunek (*) wymusza istnienie cyklu dtugosci 2. Ol
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Czes¢ 2: Powtdrka z algebry liniowe;
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Diagonalizacja, cz. 1

Niech A bedzie macierza kwadratowa o wymiarze n, zbiorze wartosci
wilasnych Ag.

Definicja. Niech A1, A2,..., A, € Aa beda wartosciami wiasnymi A,
natomiast 1, f2, ..., f, ich prawymi wektorami wtasnymi. Méwimy,
ze A jest diagonalizowalna, jezeli zachodzi réwnosé¢

A= NDN!,
gdzie D = diag(A1, A2, ..., An) jest macierza diagonalng ztozona z

wartosci whasnych, natomiast N = [fi £, ... f,] jest odwracalng
macierzg, zawierajaca w swoich kolumnach prawe wektory wtasne A.
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Diagonalizacja, cz. 2

Fakt. Jezeli wektory wtasne i, fo, ..., f, sa liniowo niezalezne, to A
jest diagonalizowalna.

Whiosek. Jezeli dla kazdej wartosci wtasnej jej wielokrotnosé¢
algebraiczna i geometryczna s3 réwne, to A jest diagonalizowalna.

Fakt. Jezeli wartosci wtasne A s3 rézne (czyli |Aa| = n), to A jest
diagonalizowalna.
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Diagonalizacja, cz. 3

Obserwacja. Poniewaz N~'A = DN, wiec N=! zawiera w swoich
wierszach lewe wektory wtasne A. Oznaczmy je przez uy, up, . .., Up.
Mamy N1 = [ul u ... u,,]

Obserwacja. Posta¢ lewych wektoréw wiasnych zalezy od wyboru
prawych wektoréw wtasnych (poniewaz N~! zalezy od N).

Obserwacja. Poniewaz N™IN = /, wiec

{ #
1 i=j.

Obserwacja. Réwnanie A = NDN~! mozna réwnowaznie zapisa¢
jako

Alx,y) = Z fi(x)ui(y)Ai.
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Diagonalizacja macierzy symetrycznych

Twierdzenie spektralne dla macierzy symetrycznych. Jezeli M
jest rzeczywista macierza symetryczna (M = MT), to wartosci
wtasne M sa rzeczywiste (czyli Apy C R) i M jest diagonalizowalna
w nastepujacy sposob:

M = NDNT,

gdzie N jest macierza ortogonalna (czyli NNT = /).

Fakt. Prawe i lewe wektory wtasne s3 rzeczywiste.
Obserwacja. Poniewaz N7 = N~ wiec prawe i lewe wektory
wtasne M sa sobie réwne (czyli f; = u; dla kazdego
ie{l,2,...,n}).

Obserwacja. Poniewaz NTN = /, wiec

f,-T5~={° 7
1 =],

czyli wektory wiasne tworza baza ortonormalna.
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Sprzezone wartosci wtasne

Fakt. Jezeli A jest rzeczywista i A € A4, to sprzezenie \ tez jest
wartoscia wtasng A.

Dowdd. Zauwazmy, ze

Av =3 AC ) = ZA =Y _ACv0) =

J J

<|
Il
<l

> )>| >
<| <
Il

>| >/| >
<|l <
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Czes¢ 3: Twierdzenie Perrona-Frobeniusa
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Twierdzenie Perrona-Frobeniusa, cz. 1

Niech P bedzie nieredukowalng macierza przejscia o zbiorze wartosci
wiasnych Ap o postaci [A1] > [Aa] > ... > |\ x| Wtedy:

>\ =1

» Dla kazdego A € Ap \ {A1} zachodzi nieréwnos¢ A1 > |A|. Jesli P
jest nieokresowa to nieréwnos¢ jest ostra: A; > |A|.

» Wielokrotnos¢ algebraiczna i geometryczna A1 wynosi 1.

Whiosek. Rozktad stacjonarny 7 jest unikalny.

» Jezeli okres P wynosi d € Ni A € Ap, to Ae?™ /9 ¢ Ap. Czyli
zbiér Ap jest niezmienniczy ze wzgledu na obrét ptaszczyzny
zespolonej o kat 27 /d.

> Jesli macierz A powstata przez odjecie 0 < € < 1 od dowolnego
wspotczynnika macierzy P, to wartosci wtasne A € A4 majg modut
mniejszy od 1 (czyli |A| < 1). Taka macierz nazywamy
substochastyczna.
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Twierdzenie Perrona-Frobeniusa, cz. 1 [ZADANIA cz. 1]

Niech A bedzie nierozktadalna macierza przejscia. Co mozemy

powiedzie¢ o wielokrotnosci algebraicznej wartosci wtasnej A = 0,
jezeli A ma...

Zadanie 1. ...rozmiar 5 x 5 i okres réwny 3?7
ODPOWIEDZ: Jej wielokortno$é jest réwna 2.

Zadanie 2. ...rozmiar 547 x 547 i okres réwny 9?7
ODPOWIEDZ: Jej wielokortno$é jest wieksza lub réwna 7.

Zadanie 3. ...rozmiar 6 x 6, okres réwny 2 i wiemy, ze 0.22 4 0.1/
jest wartoscia wtasna?

ODPOWIEDZ: Wielokrotno$¢ A\ = 0 wynosi 0.
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Twierdzenie Perrona-Frobeniusa, cz. 1 [ZADANIA cz. 2]

Zadanie 4. Macierz przejscia A ma nieparzysty okres. Czy —1 jest
wartoscia wtasna?
ODPOWIEDZ: Nie. Okres musiatby by¢ parzysty.

Zadanie 5. Przyjmijmy, ze —1 jest wartoscig wtasna A. Co mozemy
powiedzie¢ o jej podlegtym grafie?
ODPOWIEDZ: Jest dwudzielny.

Zadanie 6. Macierz przejscia A ma okres 6. Gdzie leza wartosci
wiasne o module réwnym 17 Jakie réwnanie spetniaja?
ODPOWIEDZ: Na kole jednostkowym w C. Spetniaja
réwnanie \° = 1.
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Twierdzenie Perrona-Frobeniusa, cz. 2

» Wartosci whasnej A\; mozemy réwnoczesnie przyporzadkowac scisle
dodatni lewy i prawy wektor wiasny.

Whiosek. Rozktad stacjonarny 7 jest scisle dodatni.

Obserwacja. Prawym wektorem wtasnym dla \; jest 1, co
trywialnie wynika ze stochastycznosci P.

» Jezeli dodatkowo P jest nieokresowa (czyli |A2| < 1), to
asymptotycznie (dla wystarczajaco duzych t) mamy

Pt = 1r + O(t™ Aglt)

gdzie my oznacza wielokrotnos¢ algebraiczng ».

Obserwacja. Czyli lim;_o P*(x,y) = 7(y) i szybkos¢ ,zbiegania”
zalezy od |Az].
(np. szybko dla [A2| = 0.4, wolno dla |A2| = 0.999999999999)
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Twierdzenie Perrona-Frobeniusa, cz. 3

» Jesli P NIE JEST nierozktadalna i jej podlegty graf sktada sie z
k € N silnie spéjnych sktadowych (czyli kazda spéjna sktadowa jest
nierozkfadalna), to wielokrotnos¢ A\; = 1 wynosi k.

Whiosek. Unikalnos¢ rozktadu stacjonarnego m wymaga
nierozkfadalnosci P.

Obserwacja. Przypusémy, ze k = 3. tatwo znalez¢ trzy rozktady
stacjonarne 71, w2, 3 0 roztacznych nosnikach (kazdy wsparty na
jednej z trzech silnie spéjnych sktadowych). Niech c1, 2,3 >0
beda statymi spetniajacymi réwnanie ¢; + ¢ + ¢z = 1. Witedy
mozemy stworzy¢ wektor . = c1m1 + M2 + c3m3 (jest to tzw.
kombinacja wypuk{a), ktéry réwniez jest rozktadem stacjonarnym.
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Czes¢ 4: Diagonalizacja odwracalnych tancuchéw Markowa
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Odwracalnosé

Jezeli dla kazdej pary x,y € X rozktad prawdopodobienstwa
v € [0,1]1*1 spetnia

v(x)P(x,y) = v(y)P(y, x), (*)
to macierz przejscia P jest odwracalna wzgledem v.
Fakt. Jesli P jest odwracalna wzgledem v, to v jest rozktadem

stacjonarnym P (czyli v = 7).

Dowdéd. Sumujemy obustronnie (*):
erx V(X)P(Xay) = ZXGX V(y)P(y,X) =
v(y) [Exex Py, x)] = v(y). Czyli vP = v. O

Fakt. Jesli P jest odwracalna, to jej okres jest < 2.
Dowdd. Warunek (*) wymusza istnienie cyklu dtugosci 2. Ol
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Przestrzenie (2() i (3(2)

Niech P bedzie tancuchem odwracalnym wzgledem 7. Wtedy przez
(?() oznaczamy przestrzen Hilberta na Rl z iloczynem skalarnym

=Y f(x)g(x)m(x)
xeX

i odpowiadajaca mu norma

IFll, = [ F(x)?m(x) = V/{FF).
XEX

Analogicznie definiujemy przestrzen 62(%) z (f,g)1 oraz ||f| 1.

Fakt. Macierz P jest odwracalna wzgledem 7 wtw macierz P jest
samosprzezona w £2(), czyli dla dowolnych funkcji f, g € £2(r)
zachodzi (f,Pg), = (Pf,g),.
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Diagonalizacja odwracalnych tancuchéw, cz. 1

Niech P bedzie nierozktadalna i odwracalna wzgledem 7. Jej wektory
i wartosci whasne oznaczmy Wiedy:

» Wartosci wtasne P s3 rzeczywiste i maja postac:

1=\ > X > -")‘|X|—1 > /\|X\ > —1.

» (2(7) ma bazg ortonormalna (wzgledem (-,-) ) ztozona z prawych
wektoréw wiasnych macierzy P, czyli fi,fp,..., fix|.

» Macierz P moze by¢ przedstawiona jako:
Pt =S 6T DA = FDLFT D,
X
Pt(xy) = S0 OG0T,

gdzie D, = diag(m(1),7(2),...,7(|X])), Dx = diag(A1, ..., Ax|)
oraz F=[fi K ... fly].
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Diagonalizacja odwracalnych tancuchéw, cz. 2

» (2(1) ma baze ortonormalna (wzgledem (-, ) 1) ztozona z lewych

1
K

wektoréw wiasnych macierzy P, czyli uy, ua, ..., ujy).

» Macierz P moze by¢ przedstawiona jako:

| X|
Pt =" Dijpujul X = Dy, UDSUT
j=1
X 1
Pf(x7y) = Z WUJ(X)Uj(y))\j,
j=1
dzie Dy, — diag(—L. _L_ 1
gdzie Dy iag(~ 1),7r2),...,7r(‘/.‘_,|))oraz
U= [Ul u ... U|X|]-
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Diagonalizacja odwracalnych tancuchéw, cz. 3

Obserwacja. Poniewaz

¥ X

Pi(.y) = D =N = 3 HFITA,

j=1 j=1

wigc zachodzi réwnos¢ uj(x) = m(x)fi(x).
Whiosek. Macierz P jest diagonalizowalna:

||

Pix,y) = () u(y)Af

j=1

X
Pt=> FDiUT
j=1
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Diagonalizacja odwracalnych fancuchéw, cz. 4

Whiosek. Zachodzg nastepujace réwnosci:

(uin i) =65 (fi,f). =6  (u,up)s =0y

1
ks

Whiosek wniosku. Poniewaz 1 = f; jest prawym wektorem
wihasnym, wiec wszystkie lewe wektory wtasne oprécz uy =77
sumuja sie do 0.

Whiosek wniosku. Poniewaz 7 = uy jest lewym wektorem
wilasnym o wartosci whasnej 1, wiec wszystkie prawe wektory wtasne
fi # fi spetniaja (f,m) = (£,1), = Ycr fi()7(x) = 0 (maja
,wartos¢ oczekiwang” réwna 0).
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Rzeczy zwiazane z tancuchami Markowa:

» Markov Chains and Mixing Times, David A. Levin, Yuval Peres
(2017)

» Markov Chains, Gibbs Fields, Monte Carlo Simulation and
Queues, Pierre Brémaud (2020)

Powtoérka z algebry liniowej:
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Dziekuje za uwage!
wojpacl@st.amu.edu.pl
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