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Przykłady łańcuchów Markowa
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Podstawowe pojęcia, cz. 1

Niech (Ω,F ,P) będzie przestrzenią probabilistyczną. Czym są
σ-algebra F i miara probabilistyczna P będzie jasne z kontekstu.

Skończony zbiór X = {1, 2, . . . , n} nazywamy przestrzenią stanów.

Łańcuch Markowa możemy przedstawić jako:
▶ Ciąg zmiennych losowych (X0,X1,X2, . . .), gdzie Xi : Ω → X .

▶ Skierowany graf z wagami G = (X ,E ,w), którego krawędzie
wychodzące sumują się do 1.

▶ Macierz przejścia P : X → X , która jest kwadratowa,
nieujemna (∀x , y ∈ X : P(x , y) ≥ 0) oraz stochastyczna
(∀x ∈ X

∑
y∈X P(x , y) = 1).

Intuicyjnie, zdarzenie elementarne ω ∈ Ω jest ścieżką złożoną z
wierzchołków grafu G , czyli (X0(ω),X1(ω),X2(ω), . . .).
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Podstawowe pojęcia, cz. 2

Interesują nas łańcuchy jednorodne, w których prawdopodobieństwa
przejścia nie zmieniają się w czasie: ∀a, b ∈ X , ∀t ∈ N0 mamy

P(Xt+1 = a | Xt = b) = P(X1 = a | X0 = b).

Każdy łańcuch spełnia własność Markowa, która mówi, że
przyszłość zależy tylko od stanu teraźniejszego: ∀t ∈ N0, ∀xi ∈ X
mamy

P(Xt+1 = xt+1 | Xt = xt ,Xt−1 = xt−1, . . . ,X0 = x0)

= P(Xt+1 = xt+1 | Xt = xt)
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Pożegnanie z P (nie będziemy już go używać)

Fakt. Niech P będzie macierzą przejścia. Wtedy dla każdej pary
stanów x , y ∈ X i każdego czasu t ≥ 0 mamy

P(x , y) = P(X1 = y | X0 = x)

Pt(x , y) = P(Xt = y | X0 = x).

Innymi słowy, Pt(x,y) mówi nam o prawdopodobieństwie przejścia z
x do y w t krokach.

Oczywiście P0(x , x) = 1 oraz P0(x , y) = 0.
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Nierozkładalność

Definicja. Macierz przejścia P jest nierozkładalna wtw dla każdej
pary stanów x , y ∈ X istnieje czas t ≥ 0 taki, że Pt(x , y) > 0.

Intuicja. Z każdego stanu możemy dostać się do dowolnego innego
stanu w skończonej liczbie kroków.

Obserwacja. W języku teorii grafów nierozkładalność oznacza, że
podległy graf macierzy P jest silnie spójny.
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Nierozkładalność [PRZYKŁADY]
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Okres i okresowość

Definicja. Liczbę d(x) := gcd{t ≥ 1 : Pt(x , x) > 0} nazywamy
okresem stanu x .

Fakt. Niech P będzie nierozkładalna. Jeżeli jakiś stan ma okres
k ∈ N, to wszystkie stany mają okres k .

Wniosek. Okres jest własnością całego nierozkładalnego łańcucha
Markowa.

Definicja. Jeżeli okres wszystkich stanów wynosi 1, to łańcuch
nazywamy nieokresowym.

Obserwacja. Okres P możemy równoważnie zdefiniować jako liczbę:

gcd{k ∈ N : podległy graf P zawiera skierowany cykl długości k}
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Okres i okresowość [PRZYKŁADY]
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Rozkład stacjonarny π

Definicja. Niech π ∈ [0, 1]|X | będzie wektorem wierszowym
reprezentującym rozkład prawdopodobieństwa (

∑
x∈X π(x) = 1).

Jeżeli dla każdego y ∈ X spełniona jest równość

π(y) =
∑
x∈X

π(x)P(x , y),

to π nazywamy rozkładem stacjonarnym łańcucha P .

Obserwacja. Rozkład stacjonarny π jest lewym wektorem własnym
macierzy przejścia P odpowiadającym wartości własnej równej 1:

πP = π.

Fakt. Jeśli π jest rozkładem stacjonarnym P , to dla każdego t ≥ 0
zachodzi również

πPt = π.
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Rozkład stacjonarny π [PRZYKŁADY]
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Ważne twierdzenia!!!!!!!!!!!!!!!!!!!!!!!!!!!

Twierdzenie. Jeśli P jest nierozkładalna, to istnieje unikalny i
ściśle dodatni rozkład stacjonarny π.
(Zatem jest wtedy tylko jedno rozwiązanie równania πP = π)

Twierdzenie. Jeśli P jest nieredukowalna i nieokresowa, to

lim
t→∞

Pt(x , y) → π(y).

(Wiersze P upodabniają się do π)

Fakt/Wniosek. Jeśli P jest nieredukowalna i nieokresowa, to
∃N ∈ N, ∀x , y ∈ X , ∀n > N mamy Pn(x , y) > 0.
(Od pewnego momentu macierz staje się dodatnia i już taka
pozostaje)
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Odwracalność

Jeżeli dla każdej pary x , y ∈ X rozkład prawdopodobieństwa
v ∈ [0, 1]|X | spełnia

v(x)P(x , y) = v(y)P(y , x), (*)

to macierz przejścia P jest odwracalna względem v .

Fakt. Jeśli P jest odwracalna względem v , to v jest rozkładem
stacjonarnym P (czyli v = π).
Dowód. Sumujemy obustronnie (*):∑

x∈X v(x)P(x , y) =
∑

x∈X v(y)P(y , x) =
v(y)

[∑
x∈X P(y , x)

]
= v(y). Czyli vP = v .

Fakt. Jeśli P jest odwracalna, to jej okres jest ≤ 2.
Dowód. Warunek (*) wymuszą istnienie cyklu długości 2.
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Diagonalizacja, cz. 1

Niech A będzie macierzą kwadratową o wymiarze n, zbiorze wartości
własnych ΛA.

Definicja. Niech λ1, λ2, . . . , λn ∈ ΛA będą wartościami własnymi A,
natomiast f1, f2, . . . , fn ich prawymi wektorami własnymi. Mówimy,
że A jest diagonalizowalna, jeżeli zachodzi równość

A = NDN−1,

gdzie D = diag(λ1, λ2, . . . , λn) jest macierzą diagonalną złożoną z
wartości własnych, natomiast N =

[
f1 f2 . . . fn

]
jest odwracalną

macierzą, zawierającą w swoich kolumnach prawe wektory własne A.
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Diagonalizacja, cz. 2

Fakt. Jeżeli wektory własne f1, f2, . . . , fn są liniowo niezależne, to A
jest diagonalizowalna.

Wniosek. Jeżeli dla każdej wartości własnej jej wielokrotność
algebraiczna i geometryczna są równe, to A jest diagonalizowalna.

Fakt. Jeżeli wartości własne A są różne (czyli |ΛA| = n), to A jest
diagonalizowalna.
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Diagonalizacja, cz. 3

Obserwacja. Ponieważ N−1A = DN−1, więc N−1 zawiera w swoich
wierszach lewe wektory własne A. Oznaczmy je przez u1, u2, . . . , un.
Mamy N−1 =

[
u1 u2 . . . un

]T .

Obserwacja. Postać lewych wektorów własnych zależy od wyboru
prawych wektorów własnych (ponieważ N−1 zależy od N).

Obserwacja. Ponieważ N−1N = I , więc

uTi fj =

{
0 i ̸= j

1 i = j .

Obserwacja. Równanie A = NDN−1 można równoważnie zapisać
jako

A(x , y) =
n∑

i=1

fi (x)ui (y)λi .
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Diagonalizacja macierzy symetrycznych

Twierdzenie spektralne dla macierzy symetrycznych. Jeżeli M
jest rzeczywistą macierzą symetryczną (M = MT ), to wartości
własne M są rzeczywiste (czyli ΛM ⊂ R) i M jest diagonalizowalna
w następujący sposób:

M = NDNT ,

gdzie N jest macierzą ortogonalną (czyli NNT = I ).
Fakt. Prawe i lewe wektory własne są rzeczywiste.
Obserwacja. Ponieważ NT = N−1, więc prawe i lewe wektory
własne M są sobie równe (czyli fi = ui dla każdego
i ∈ {1, 2, . . . , n}).
Obserwacja. Ponieważ NTN = I , więc

f Ti fj =

{
0 i ̸= j

1 i = j ,

czyli wektory własne tworzą bazą ortonormalną.
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Sprzężone wartości własne

Fakt. Jeżeli A jest rzeczywista i λ ∈ ΛA, to sprzężenie λ też jest
wartością własną A.
Dowód. Zauważmy, że

Av =
∑
j

A(·, j)v(j) =
∑
j

A(·, j)v(j) =
∑
j

A(·, j)v(j) = Av .

Zatem

Av = λv

Av = λv

Av = λv .
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Twierdzenie Perrona-Frobeniusa, cz. 1

Niech P będzie nieredukowalną macierzą przejścia o zbiorze wartości
własnych ΛP o postaci |λ1| ≥ |λ2| ≥ . . . ≥ |λ|X ||. Wtedy:

▶ λ1 = 1

▶ Dla każdego λ ∈ ΛP \ {λ1} zachodzi nierówność λ1 ≥ |λ|. Jeśli P
jest nieokresowa to nierówność jest ostra: λ1 > |λ|.
▶ Wielokrotność algebraiczna i geometryczna λ1 wynosi 1.

Wniosek. Rozkład stacjonarny π jest unikalny.

▶ Jeżeli okres P wynosi d ∈ N i λ ∈ ΛP , to λe2πi/d ∈ ΛP . Czyli
zbiór ΛP jest niezmienniczy ze względu na obrót płaszczyzny
zespolonej o kąt 2π/d .

▶ Jeśli macierz A powstała przez odjęcie 0 < ϵ < 1 od dowolnego
współczynnika macierzy P , to wartości własne λ ∈ ΛA mają moduł
mniejszy od 1 (czyli |λ| < 1). Taką macierz nazywamy
substochastyczną.
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Twierdzenie Perrona-Frobeniusa, cz. 1 [ZADANIA cz. 1]

Niech A będzie nierozkładalną macierzą przejścia. Co możemy
powiedzieć o wielokrotności algebraicznej wartości własnej λ = 0,
jeżeli A ma...

Zadanie 1. ...rozmiar 5 × 5 i okres równy 3?
ODPOWIEDŹ: Jej wielokortność jest równa 2.

Zadanie 2. ...rozmiar 547 × 547 i okres równy 9?
ODPOWIEDŹ: Jej wielokortność jest większa lub równa 7.

Zadanie 3. ...rozmiar 6 × 6, okres równy 2 i wiemy, że 0.22 + 0.1i
jest wartością własną?
ODPOWIEDŹ: Wielokrotność λ = 0 wynosi 0.
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Twierdzenie Perrona-Frobeniusa, cz. 1 [ZADANIA cz. 2]

Zadanie 4. Macierz przejścia A ma nieparzysty okres. Czy −1 jest
wartością własną?
ODPOWIEDŹ: Nie. Okres musiałby być parzysty.

Zadanie 5. Przyjmijmy, że −1 jest wartością własną A. Co możemy
powiedzieć o jej podległym grafie?
ODPOWIEDŹ: Jest dwudzielny.

Zadanie 6. Macierz przejścia A ma okres 6. Gdzie leżą wartości
własne o module równym 1? Jakie równanie spełniają?
ODPOWIEDŹ: Na kole jednostkowym w C. Spełniają
równanie λ6 = 1.
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Twierdzenie Perrona-Frobeniusa, cz. 2

▶ Wartości własnej λ1 możemy równocześnie przyporządkować ściśle
dodatni lewy i prawy wektor własny.

Wniosek. Rozkład stacjonarny π jest ściśle dodatni.

Obserwacja. Prawym wektorem własnym dla λ1 jest 1, co
trywialnie wynika ze stochastyczności P .

▶ Jeżeli dodatkowo P jest nieokresowa (czyli |λ2| < 1), to
asymptotycznie (dla wystarczająco dużych t) mamy

Pt = 1π + O(tm2−1|λ2|t)

gdzie m2 oznacza wielokrotność algebraiczną λ2.

Obserwacja. Czyli limt→∞ Pt(x , y) = π(y) i szybkość „zbiegania”
zależy od |λ2|.
(np. szybko dla |λ2| = 0.4, wolno dla |λ2| = 0.999999999999)
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Twierdzenie Perrona-Frobeniusa, cz. 3

▶ Jeśli P NIE JEST nierozkładalna i jej podległy graf składa się z
k ∈ N silnie spójnych składowych (czyli każda spójna składowa jest
nierozkładalna), to wielokrotność λ1 = 1 wynosi k .

Wniosek. Unikalność rozkładu stacjonarnego π wymaga
nierozkładalności P.

Obserwacja. Przypuśćmy, że k = 3. Łatwo znaleźć trzy rozkłady
stacjonarne π1, π2, π3 o rozłącznych nośnikach (każdy wsparty na
jednej z trzech silnie spójnych składowych). Niech c1, c2, c3 ≥ 0
będą stałymi spełniającymi równanie c1 + c2 + c3 = 1. Wtedy
możemy stworzyć wektor πc = c1π1 + c2π2 + c3π3 (jest to tzw.
kombinacja wypukła), który również jest rozkładem stacjonarnym.
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Odwracalność

Jeżeli dla każdej pary x , y ∈ X rozkład prawdopodobieństwa
v ∈ [0, 1]|X | spełnia

v(x)P(x , y) = v(y)P(y , x), (*)

to macierz przejścia P jest odwracalna względem v .

Fakt. Jeśli P jest odwracalna względem v , to v jest rozkładem
stacjonarnym P (czyli v = π).
Dowód. Sumujemy obustronnie (*):∑

x∈X v(x)P(x , y) =
∑

x∈X v(y)P(y , x) =
v(y)

[∑
x∈X P(y , x)

]
= v(y). Czyli vP = v .

Fakt. Jeśli P jest odwracalna, to jej okres jest ≤ 2.
Dowód. Warunek (*) wymuszą istnienie cyklu długości 2.
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Przestrzenie ℓ2(π) i ℓ2( 1
π)

Niech P będzie łańcuchem odwracalnym względem π. Wtedy przez
ℓ2(π) oznaczamy przestrzeń Hilberta na R|X | z iloczynem skalarnym

⟨f , g⟩π :=
∑
x∈X

f (x)g(x)π(x)

i odpowiadającą mu normą

∥f ∥π :=

√∑
x∈X

f (x)2π(x) =
√
⟨f , f ⟩.

Analogicznie definiujemy przestrzeń ℓ2( 1
π ) z ⟨f , g⟩ 1

π
oraz ∥f ∥ 1

π
.

Fakt. Macierz P jest odwracalna względem π wtw macierz P jest
samosprzężona w ℓ2(π), czyli dla dowolnych funkcji f , g ∈ ℓ2(π)
zachodzi ⟨f ,Pg⟩π = ⟨Pf , g⟩π.
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Diagonalizacja odwracalnych łańcuchów, cz. 1

Niech P będzie nierozkładalna i odwracalna względem π. Jej wektory
i wartości własne oznaczmy Wtedy:
▶ Wartości własne P są rzeczywiste i mają postać:
1 = λ1 > λ2 ≥ . . . λ|X |−1 ≥ λ|X | ≥ −1.

▶ ℓ2(π) ma bazę ortonormalną (względem ⟨·, ·⟩π) złożoną z prawych
wektorów własnych macierzy P , czyli f1, f2, . . . , f|X |.

▶ Macierz P może być przedstawiona jako:

Pt =
∑|X |

j=1 fj f
T
j Dπλ

t
j = FDt

λF
TDπ

Pt(x , y) =
∑|X |

j=1 fj(x)fj(y)π(y)λ
t
j ,

gdzie Dπ = diag(π(1), π(2), . . . , π(|X |)), Dλ = diag(λ1, . . . , λ|X |)

oraz F =
[
f1 f2 . . . f|X |

]
.
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Diagonalizacja odwracalnych łańcuchów, cz. 2

▶ ℓ2( 1
π ) ma bazę ortonormalną (względem ⟨·, ·⟩ 1

π
) złożoną z lewych

wektorów własnych macierzy P , czyli u1, u2, . . . , u|X |.

▶ Macierz P może być przedstawiona jako:

Pt =

|X |∑
j=1

D1/πuju
T
j λ

t
j = D1/πUD

t
λU

T

Pt(x , y) =

|X |∑
j=1

1
π(x)

uj(x)uj(y)λ
t
j ,

gdzie D1/π = diag( 1
π(1) ,

1
π(2) , . . . ,

1
π(|X |)) oraz

U =
[
u1 u2 . . . u|X |

]
.
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Diagonalizacja odwracalnych łańcuchów, cz. 3

Obserwacja. Ponieważ

Pt(x , y) =

|X |∑
j=1

1
π(x)

uj(x)uj(y)λ
t
j =

|X |∑
j=1

fj(x)fj(y)π(y)λ
t
j ,

więc zachodzi równość uj(x) = π(x)fj(x).

Wniosek. Macierz P jest diagonalizowalna:

Pt(x , y) =

|X |∑
j=1

fj(x)uj(y)λ
t
j

Pt =

|X |∑
j=1

FDt
λU

T
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Diagonalizacja odwracalnych łańcuchów, cz. 4

Wniosek. Zachodzą następujące równości:

⟨ui , fj⟩ = δij ⟨fi , fj⟩π = δij ⟨ui , uj⟩ 1
π
= δij .

Wniosek wniosku. Ponieważ 1 = f1 jest prawym wektorem
własnym, więc wszystkie lewe wektory własne oprócz u1 = πT

sumują się do 0.

Wniosek wniosku. Ponieważ π = uT1 jest lewym wektorem
własnym o wartości własnej 1, więc wszystkie prawe wektory własne
fj ̸= f1 spełniają ⟨fj , π⟩ = ⟨fj , 1⟩π =

∑
x∈X fj(x)π(x) = 0 (mają

„wartość oczekiwaną” równą 0).
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