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1. TL;DR

Dany jest skończony, jednorodny, nierozkładalny i nieokresowy łańcuch
Markowa o macierzy przejścia P . Interesuje nas, jak szybko potęgi macierzy
P zbiegają do rozkładu stacjonarnego. Jednym ze sposobów oszacowania tej
prędkości jest znalezienie ograniczenia na lukę spektralną macierzy P . Dla
leniwych łańcuchów odwracalnych możemy to osiągnąć poprzez wyznaczenie
wielkości zwanej stałą Poincaré. Mówi nam ona o „wąskich gardłach”
występujących w podległym grafie rozważanego łańcucha Markowa (z tego
powodu jest często porównywana do stałej Cheegera, znanej z teorii grafów) i
dzięki temu dostarcza dolnego ograniczenia na lukę spektralną.

Fig. 1: Każda ścieżka między grafiami K5 i K6 musi przejść przez „wąskie gardło” (kolor czerwony).

2. Łańcuchy Markowa

Skończony zbiór X = {1, 2, . . . , n} nazwijmy przestrzenią stanów. Łańcuch
Markowa na X możemy przedstawiać na dwa sposoby:
• jako macierz przejścia P rozmiaru n × n, która jest kwadratowa,

nieujemna oraz stochastyczna (wyrazy w każdym wierszu sumują się do
1),

• jako skierowany graf z wagami, gdzie wagi krawędzi wychodzących z dowolnego
wierzchołka sumują się do 1.
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Fig. 2: Dwa przykłady skończonych jednorodnych łańcuchów Markowa wraz z ich macierzami przejścia.

Będziemy rozważać wyłącznie łańcuchy jednorodne, w których
prawdopodobieństwa przejścia nie zmieniają się w czasie. Ponadto, każdy
łańcuch spełnia własność Markowa, która mówi, że przyszłość zależy tylko
od stanu teraźniejszego.
Fakt. Wyraz P t(x, y) mówi nam o prawdopodobieństwie przejścia ze stanu x
do stanu y w t krokach.
W reszcie postera będziemy zakładać, że nasza macierz przejścia P jest:
nierozkładalna, nieokresowa i odwracalna względem wektora rozkładu
stacjonarnego, który oznaczymy przez π.
Twierdzenie. Wiersze kolejnych potęg macierzy P zbiegają do rozkładu π,
czyli P t(x, y)

t→∞−−−→ π(y). Ponadto, wektor π jest ściśle dodatni.

3. Luka spektralna i diagonalizacja

Twierdzenie. Wartości własne macierzy P są rzeczywiste i mają postać:
1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λn−1 ≥ λn > −1.

Definicja. Zdefiniujmy liczbę:
λ∗ = max {|λi| : 2 ≤ i ≤ n} = max {λ2,−λn} .

Wtedy 1− λ∗ nazywamy luką spektralną macierzy P .
Twierdzenie. Macierz P jest diagonalizowalna, tzn.

P t(x, y) =
n∑

j=1

fj(x)uj(y)λ
t
j = π(y) +

n∑
j=2

fj(x)uj(y)λ
t
j = π(y) +O(λt

∗),

gdzie fi i uTi są, odpowiednio, prawym i lewym wektorem własnym
odpowiadającym wartości własnej λi.
Wniosek. Ponieważ λt

∗
t→∞−−−→ 0, więc luka spektralna mówi nam o szybkości

zbiegania do rozkładu stacjonarnego (im bliższa jest zeru, tym wolniejsze
zbieganie).

4. Spektrum leniwego łańcucha

Definicja. Łańcuch o macierzy przejścia L = (I +P )/2 nazywamy
leniwą wersją łańcucha P . Innymi słowy,

L(x, y) =

{
1
2 + P (x, x), x = y
1
2P (x, y), x ̸= y.

Równoważna interpretacja: przed każdym krokiem rzucamy monetą
i albo się nie ruszamy, albo ruszamy się zgodnie z P .
Fakt. Jeśli π jest rozkładem stacjonarnym łańcucha Markowa
P , to jest również rozkładem stacjonarnym łańcucha L.
Fakt. Niech βi będzie i-tą największą wartością własną łańcucha
L. Wtedy βi = (1 + λi)/2. Zatem, wartości własne L są
nieujemne i należą do przedziału [1, 0) (w przypadku P był to
przedział [1,−1)).
Fakt. Luka spektralna łańcucha L wynosi 1 − β∗, gdzie β∗ =
β2 = (1 + λ2)/2.
Wniosek. Aby oszacować lukę spektralną leniwego łańcucha,
potrzebujemy wyłącznie β2 bez konieczności znajdowania βn.

5. Stała Poincaré

Przez G = (X , E) oznaczmy podległy graf macierzy przejścia L.
Definicja. Dla każdej uporządkowanej pary różnych stanów i, j ∈
X wybierzmy arbitralnie jedną skierowaną ścieżkę prostą γij
(wierzchołki mogą się powtarzać, ale krawędzie już nie; kierunek
krawędzi musi być zgodny). Przez Γ oznaczmy zbiór wszystkich
wybranych ścieżek; moc tego zbioru to |Γ| = |X |(|X | − 1). Wtedy
stałą Poincaré nazywamy liczbę

κ = κ(Γ) = max
(i,j)∈E

 ∑
γxy∋(i,j)

|γxy|Qπ(x)π(y)

 ,

gdzie |γxy|Q =
∑

(a,b)∈γxy
1

π(a)L(a,b).
Obserwacja. Liczba κ mierzy „wąskie gardła” (patrz: Fig. 1) w
grafie G. Jest duża, gdy 1) wiele ścieżek z Γ przechodzi przez tę samą
krawędź, 2) wielkość |γxy|Q jest duża, czyli ścieżka γxy jest długa i
składa się z krawędzi o niskich prawdopodobieństwach.
Twierdzenie. Mamy następujące dolne oszacowanie na lukę
spektralną macierzy L:

1

κ
≤ 1− β∗.

6. Prosty spacer losowy na grafie

Przyjmijmy, że S jest leniwą wersją prostego spaceru losowego
na grafie G. Wtedy

S(x, y) =

{
1

2 deg(x), x ̸= y
1
2, x = y

oraz π(x) =
deg(x)
2|E|

.

Lukę spektralną łańcucha S oznaczmy przez 1− β∗.
Fakt. Dla dowolnego zbioru ścieżek Γ mamy:

κ ≤ LΓbΓ∆
2

|E|
,

gdzie ∆ jest maksymalnym stopniem wierzchołka w grafie G,
LΓ := max {|γ| : γ ∈ Γ} jest długością najdłuższej ścieżki z Γ,
natomiast bΓ := maxe∈E |{γ ∈ Γ : e ∈ γ}| jest liczbą ścieżek z Γ
przechodzących przez „najpopularniejszą” krawędź.
Wniosek. Korzystając z Twierdzenia z poprzedniej sekcji,
otrzymujemy:

|E|
LΓbΓ∆2

≤ 1− β∗.


