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Dany jest skonczony, jednorodny, nierozktadalny 1 nieokresowy tancuch
Markowa o macierzy przejscia P. Interesuje nas, jak szybko potegi macierzy
P zbiegaja do rozktadu stacjonarnego. Jednym ze sposobow oszacowania tej
predkosci jest znalezienie ograniczenia na [uke spektralng macierzy P. Dla
lenitwych tancuchéw odwracalnych mozemy to osiggna¢ poprzez wyznaczenie
wielkosci zwanej staftqg Poincaré.  Mowi nam ona o ,waskich gardtach”
wystepujacych w podleglym grafie rozwazanego lancucha Markowa (z tego
powodu jest czesto poréwnywana do stafej Cheegera, znanej z teorii grafow) i
dzieki temu dostarcza dolnego ograniczenia na luke spektralng.
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Fig. 1: Kazda Sciezka miedzy grafiami K5 i K¢ musi przejsé przez ,waskie gardlo” (kolor czerwony).

2. Lancuchy Markowa

Skonczony zbior X = {1,2,...,n} nazwijmy przestrzeniag stanéw. Lancuch
Markowa na X mozemy przedstawia¢ na dwa sposoby:

« jako macierz przejscia P rozmiaru n X n, ktora jest kwadratowa,
nieujemna oraz stochastyczna (wyrazy w kazdym wierszu sumujg sie do

1),
e jako skierowany grat z wagami, gdzie wagi krawedzi wychodzacych z dowolnego
wierzchotka sumujg sie do 1.
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Fig. 2: Dwa przykiady skonczonych jednorodnych tancuchow Markowa wraz z ich macierzami przejscia.

Bedziemy rozwaza¢  wytacznie tancuchy jednorodne, w  ktorych
prawdopodobienstwa przejscia. nie zmieniaja sie w czasie. Ponadto, kazdy
tancuch spetnia wltasnosé Markowa, ktora mowi, ze przysziosc zalezy tylko

od stanu terazniejszego.

Fakt. Wyraz P'(x,y) méwi nam o prawdopodobienstwie przejscia ze stanu x
do stanu y wt krokach.

W reszcie postera bedziemy zakiadac¢, ze nasza macierz przejscia P jest:
nierozkladalna, nieokresowa i odwracalna wzgledem wektora rozkladu
stacjonarnego, ktory oznaczymy przez .

Twierdzenie. Wiersze kolejnych poteqg macierzy P zbiegajq do rozktadu m,

czyli P'(x, ) e, m(y). Ponadto, wektor w jest scisle dodatni.

3. Luka spektralna i diagonalizacja

Twierdzenie. Wartosci wltasne macierzy P sq rzeczywiste © majqg postac:
l=M>XN>2X>...2 N1 2N\, > —1.
Definicja. Zdefiniujmy liczbe:
Ay = max{|N\] 2 <7< n}=max{ ), —\,}.
Wtedy 1 — A\, nazywamy lukg spektralng macierzy P.

Twierdzenie. Macierz P jest diagonalizowalna, tzn.

Pl(z,y) = Z fil@)u;(y) N = 7(y) Z fi(@)u;(y) A = 7(y) + O(\),

gdzie f; i ul sq, odpowiednio, prawym i lewym wektorem wlasnym

odpowiadajgcym wartosct wiasnej A;.
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Whiosek. Poniewaz \.. —= 0, wiec luka spektralna méwi nam o szybkosci

zbiegania do rozkladu stacjonarnego (im blizsza jest zeru, tym wolniejsze
zbieganie).

4. Spektrum leniwego lancucha

Definicja. Lancuch o macierzy przejscia L = (I + P)/2 nazywamy
leniwg wersjq tancucha P. Innymi stowy,
4

% + P(z, ), T =1y

5Pz, y), v #y.

Réwnowazna interpretacja: przed kazdym krokiem rzucamy monetg
i albo sie nie ruszamy, albo ruszamy sie zgodnie z P.

L(x,y) = 4

Fakt. Jesli m jest rozktadem stacjonarnym tancucha Markowa
P, to jest rowniez rozktadem stacjonarnym tancucha L.

Fakt. Niech 5; bedzie i-tqg najwiekszq wartoscig wiasng tancucha
L. Wtedy B; = (1 + X\;)/2. Zatem, wartosci wilasne L sq
nieujemne i nalezg do przedziatu [1,0) (w przypadku P byt to
przedziat |1, —1)).

Fakt. Luka spektralna tancucha L wynosi 1 — 8%, gdzie B, =

Whniosek. Aby oszacowaé luke spektralng leniwego {tancucha,
potrzebujemy wytgcznie By bez koniecznosci znajdowania (3,.

5. Stata Poincaré

Przez G = (X, F) oznaczmy podlegly graf macierzy przejécia L.

Definicja. Dla kazdej uporzadkowanej pary roznych stanow 7, 3 €
X wyblerzmy arbitralnie jedng skierowang Sciezke prosty -;;
(wierzcholki moga sie powtarza¢, ale krawedzie juz nie; kierunek
krawedzi musi by¢ zgodny). Przez I' oznaczmy zbiér wszystkich
wybranych Sciezek; moc tego zbioru to |I'| = |X|(|X]| — 1). Wtedy
stalg Poincaré nazywamy liczbe
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Obserwacja. Liczba k mierzy ,waskie gardia” (patrz: Fig. ) W
grafie G. Jest duza, gdy 1) wiele sciezek z I" przechodzi przez te sama
krawedz, 2) wielkod¢ |v.,|o jest duza, czyli Sciezka v, jest dluga i
sktada sie z krawedzi o niskich prawdopodobienstwach.

Twierdzenie. Mamy nastepujgce dolne oszacowanie na luke
spektralng macierzy L:
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6. Prosty spacer losowy na grafie

Przyjmijmy, ze S jest leniwa wersjg prostego spaceru losowego
na grafie G. Wtedy

(1
2 deg()? t7Y oraz W(aj)_deg(x)

S(z,y) =47 = .
L 27 L =Y 2‘E|

Luke spektralng tancucha S oznaczmy przez 1 — B..

Fakt. Dla dowolnego zbioru sciezek 1" mamy:
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gdzie A jest maksymalnym stopniem wierzchotka w grafie G,
Lr = max{|y|:v €'} jest dlugosciqg najdtuiszej scieiki z T,
natomiast bp = max.cp [{y € ' : e € ~v}| jest liczbg Sciezek z T
przechodzgcych przez ,najpopularniejszq” krawedz.

Whniosek. Korzystajoc z Twierdzenia z poprzedniej sekcji,
otrzymujemy:




