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Problem trasy 
skoczka



Co ten problem ma wspólnego z teorią grafów?



Co ten problem ma wspólnego z teorią grafów?



Jak jest z 
szachownicami
innych rozmiarów???



Twierdzenie [Allen Schwenk, 1991]

Dla szachownicy m×n (m≤n) istnieje zamknięta trasa skoczka (cykl
Hamiltona), chyba że jeden z następujących warunków jest 
prawdziwy:

(a) m i n są jednocześnie nieparzyste,

(b) m=1, 2 lub 4,

(c) m=3 i n=4, 6 lub 8.
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Skoczek z czarnego pola zawsze rusza na białe i odwrotnie.
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(c) m=3 i n=4, 6 lub 8.
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Argument taki sam jak dla m=4.
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Własność grafu hamiltonowskiego:
Po usunięciu k nieincydentnych wierzchołków
dostajemy co najwyżej k spójnych części grafu.
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• m=3 i n=8

Fakt
Dla wierzchołka o stopniu 2, obie krawędzie incydentne z 
nim muszą być w cyklu Hamiltona.





































Co z resztą szachownic?



Co z resztą szachownic?
Lemat
Jeśli graf mxn ma cykl Hamiltona, który zawiera
następujące 10 krawędzi:

To graf mx(n+4) również ma cykl Hamiltona
zawierający odpowiadające im 10 krawędzi:



Przykład - grafy 3x10 i 3x(10+4)



Jakie grafy są naszymi warunkami
początkowymi?
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