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Co ten problem ma wspolnego z teorig grafow?




Co ten problem ma wspolnego z teorig grafow?




Jak jest z
szachownicami
iInnych rozmiarow???



Twierdzenie [Allen Schwenk, 1991}

Dla szachownicy mxn (m<n) istnieje zamknieta trasa skoczka (cykl

Hamiltona), chyba ze jeden z nastepujacych warunkow jest
prawdziwy:

(a) min sgjednoczesnie nieparzyste,
(b) m=1, 2 lub 4,

(c) m=3in=4,6 lub 8.
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(a) min sagjednoczesnie nieparzyste

Skoczek z czarnego pola zawsze rusza na biate i odwrotnie.



(b) m=1, 2 lub 4
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(c) m=31n=4,6 lub 8.

* m=3in=4
Argument taki sam jak dla m=4.

e m=3in=6
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* m=3in=4
Argument taki sam jak dla m=4.

e m=3in=6

Wtasnos¢ grafu hamiltonowskiego:
Po usunieciu k nieincydentnych wierzchotkow
dostajemy co najwyzej k spojnych czesci grafu.
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m=31n=8

Fakt
Dla wierzchotka o stopniu 2, obie krawedzie incydentne z
nim muszg by¢ w cyklu Hamiltona.













































s









Co z resztg szachownic?



Co z resztg szachownic?

Lemat
Jesli graf mxn ma cykl Hamiltona, ktory zawiera
nastepujgce 10 krawedzi:

(Ln=1)-(3,n) (m=2n—1)-(m,n) (m=11)-(m,3) (m=1,n-2)-(m,n)
(4d.n-1)-(2,n) (Ln)-(3,n-1) (m=2,n)-(m,n-1) (m,1)-(m—=1,3)
(mn=2-(m=1,n)  (m,2)-(m—-1,4),

To graf mx(n+4) rowniez ma cykl Hamiltona
zawierajgcy odpowiadajgce im 10 krawedzi:

(Ln+3)-B,n+4) (m—-2,n+3)-(m,n+4) (m—1,1)-(m,3)
(m=1Ln+2)-(mn+4) (“An+3)-2,n+4) (,n+4)-(3,n+3)
(m—2,n+4)-(m,n+3) (m,1)-(m—1,3) (mn+2)-(m—1,n+4)

(m,2)-(m —1,4).
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Przyktad - grafy 3x70 1 3x(10+4)




Jakie grafy sg naszymi warunkami
poczgtkowymi?
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Jakie grafy sg naszymi warunkami
poczgtkowymi?
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Jakie grafy sg naszymi warunkami
poczgtkowymi?
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Jakie grafy sg naszymi warunkami
poczgtkowymi?

C0,0) —> 8 x ¥
T0 11 —=> ¥x D
0,21 —> VX6
LO %] — Bx3
L4272 —= bx 6
L2, —>  bx6

CQ\L%‘S — bx>S



Jakie grafy sg naszymi warunkami
poczgtkowymi?

fool —> &xX
fo 11 —> ¥x D
0,21 —> VX6
O %Y —> Bx3D
t{121 — 67&6
L2 8 —> g
CQ\L%‘S — 6x>



Jakie grafy sg naszymi warunkami

poczgtkowymi?
Lol —> &xX¥
fo 1 —> x5
021 —> X6
O — —> fAx3 5 &»F
L4230 — Gx 6
L2, 21 —  AHxE
Laxl — —5 10x% |, F+x6
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 Schwenk, A. J. 1991 Which rectangular chessboards have a
knight’s tour? Mathematics Magazine 64, 325-332.
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